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Abstract. By means of numerical simulations, we demonstrate that an alternating-current (ac)
field can support stably moving collective nonlinear excitations in the form of dislocations
(topological solitons, or kinks) in the Frenkel–Kontorova (FK) lattice with weak friction, as was
qualitatively predicted by Bonilla and Malomed (Bonilla L L and Malomed B A 1991Phys. Rev.
B 43 11 539). Direct generation of the moving dislocations turns out to be virtually impossible;
however, they can be generated initially in the lattice subject to an auxiliary spatial modulation
of the on-site potential strength. Gradually relaxing the modulation, we are able to get stable
moving dislocations in the uniform FK lattice with periodic boundary conditions, provided that the
driving frequency is close to the gap frequency of the linear excitations in the uniform lattice. The
excitations that can be generated in this way have a large and noninteger index of commensurability
with the lattice (so suggesting that the actual value of the commensurability index is irrational). The
simulations reveal two different types of moving dislocation: broad ones, that extend, roughly, to
half the full length of the periodic lattice (in that sense, they cannot be called solitons); and localized
soliton-like dislocations, that can be found in an excited state, demonstrating strong persistent
internal vibrations. The minimum (threshold) amplitude of the driving force necessary to support
the travelling excitation is found as a function of the friction coefficient. Its extrapolation suggests
that the threshold does not vanish at zero friction, which may be explained by radiation losses.
The moving dislocation can be observed experimentally in an array of coupled small Josephson
junctions in the form of aninverse Josephson effect, i.e., a direct-current-voltage response to the
uniformly applied ac bias current.

1. Introduction

The role of solitons (localized nonlinear collective excitations) in nonlinear dynamical models
of solid-state and polymer physics is well known (see, e.g., [1, 2]). In real systems, the most
crucial problem is compensation of dissipative losses. In particular, the losses always give rise
to a friction force acting on a moving soliton. The friction is usually balanced by a driving
force, which may be induced by an external field. If the losses are weak enough, i.e., the
corresponding model isunderdamped(which is typical for the Josephson junctions [3]), the
necessary driving field is also weak. In uniform continuous systems with friction, the external
drive cannot support progressive (on average) soliton motion unless the field contains a dc
component. However, an ac drive withzerodc component can give rise, in the presence of
friction, to motion of a soliton at a nonzero mean velocity in a continuous system periodically
modulated in space [4], or in a discrete lattice. A physically relevant modulated continuous
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model, in which this effect was studied in detail analytically and numerically, describes a long
Josephson junction with a periodically modulated critical current density (which can easily be
realized in the experiment by means of periodic modulation of the thickness of the junction’s
dielectric layer [5]):

φtt − φxx + [1 + ε sin(x/L)] sinφ = −αφt + γ sin(ωt) (1)

whereφ is the magnetic flux inside the junction, the coordinatex and timet are measured in
units of the Josephson penetration length and inverse gap frequency of the junction,α is the
dissipative constant, andε andL are the amplitude and period of the modulation,γ andω
being the amplitude and frequency of the ac bias current driving the junction. A soliton in the
model (1) moving at a nonzero mean velocity represents aninverseJosephson effect.

The basic mechanism, which is common to the modulated continuous model (1) and the
discrete models described below, is that the motion of a topological soliton (kink) with a
nonzero mean velocityv may be possible, in the lossy system, in aresonantcase, when the
period 2π/ω of the driving ac force is a multiple of the timeL/v which the soliton takes to
pass one spatial period: 2π/ω = mL/v, wherem = 1, 2, 3, . . . is the order of the resonance.
More general subharmonic resonances, with

v = (m/M)(Lω/2π) (2)

(m andM being mutually prime integers), are possible too.
In the lattices, a similar effect was predicted in models of two different kinds: Toda-

type chains, in which the interaction between neighbouring particles is anharmonic (with no
substrate potential); and lattices of the Frenkel–Kontorova (FK) type, combining the harmonic
interaction between the neighbours and an anharmonic on-site potential. Note that the FK
lattice finds its straightforward (and, as a matter of fact, most realistic) physical realization
in the form of a an array of coupled small Josephson junctions (traditionally, the FK model
was applied to crystal-lattice dynamics [2], where, however, this model may be too idealized
because of the complexity and non-one-dimensionality of the real crystals, strong dissipation
and thermal fluctuations, etc). Recently, precise experiments with the Josephson arrays have
begun [6,7]. The necessary drive is provided by the ac bias current uniformly applied to all the
junctions. Then, the progressive motion of the soliton-like excitation can be easily observed
in the form of mean dc voltage across the junctions.

In [8], the ac-driven motion of a dislocation was predicted analytically for the Toda-lattice
models, and in [9] it was observed in direct numerical simulations of an ac-driven weakly
damped Toda lattice (in its so-called dual form). Recently, a similar effect was described
analytically and found numerically also in aparametricallyac-driven weakly damped Toda
lattice [10].

In the earlier work [11], the existence of a moving kink (lattice dislocation) was predicted
for the ac-driven FK model with weak friction (cf. equation (1)),

ξ̈n − a−2(ξn−1 + ξn+1− 2ξn) + sinξn = −αξ̇n + γ sin(ωt) (3)

whereξn(t) is the coordinate of thenth particle in the lattice, and the inverse coupling constant
a plays the role of the lattice spacing in the quasicontinuum limit. Like in the continuum model
(1), in equation (3) time is rescaled so that the coefficient in front of the on-site nonlinear term
sinξn is≡1. In the lattice, it is natural to measure the travelled distance by counting the number
of the sites that the soliton has passed. The accordingly defined velocityu of the ac-driven
soliton in the lattice was predicted in [11] to be, in the general case,

u = (m/M)(ω/2π) (4)

where, like in equation (2),m andM are the super- and subharmonic resonance orders. In
view of the evident reflectional symmetry of the lattice, the resonant velocity may have either
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sign. In a physical or numerical experiment, the sign of the velocity is determined by the initial
conditions. Note also that the resonant velocity (4) is not related to the phase or group velocity
of the free excitations in the ideal (undamped and undriven) linearized FK lattice.

Along with the resonant velocity, an important characteristic of the ac-driven motion is
the threshold valueγthr(α, ω) of the drive’s amplitude, i.e., a minimum value of the amplitude
which, at fixed values ofα, ω, and other parameters, admits the ac-driven motion. In the
modulated continuous model (1), the threshold was found analytically in the framework of the
perturbation theory, treatingε, α, andγ as small parameters, and taking the kink solution to
the unperturbed sine–Gordon (SG) equation as the zero-order approximation. This analytical
result was demonstrated to be in good agreement with direct simulations [4]. The perturbation
theory was also applied to the different versions of the ac-driven damped Toda lattice, which
had produced a prediction for the threshold amplitude [8,10] that was in a reasonable agreement
with the numerical simulations reported in [9,10].

For the ac-driven damped FK lattice, the situation is more difficult, as even the unperturbed
FK lattice, i.e., the one without the friction and drive terms, is far from being solvable in
any sense. Numerical simulations, starting from the work [12], have demonstrated that the
unperturbed FK lattice does not support any fully stable moving kink. Instead, the discreteness
gives rise to emission of radiation by the moving kink (which may produce strong resonant
effects [13]), i.e., an effective radiation friction force. Moreover, in certain cases the emission
of radiation may produce strong resonant effects [13]. In any case, the ac drive in the model
(3) must compensate both the direct dissipative losses and the radiation.

Because no well-defined zero-order approximation for the moving soliton is available, the
only practical possibility for getting analytical estimates is to use the quasicontinuum approx-
imation, which was done in [11] in order to predict the threshold for the existence of the
ac-driven soliton in the ac-driven damped FK lattice. However, the quasicontinuum approx-
imation had produced a threshold amplitude that was exponentially large in the discreteness
parametera (see equation (3)). In reality, the system may easily develop an instability and
slide into a chaotic regime before reaching such a large value of the driving amplitude (see,
e.g., [14]). Therefore, without direct numerical simulations, it is not clear whether one can
rely upon the predictions of the quasicontinuum approximation.

The first simulations of the kink’s dynamics in the model (3) were reported in [14], where
no case of the ac-driven kink’s motion was found, and it had been concluded that this regime
is impossible. In contrast with that, a recent work [15] reported other results of simulations
of a FK lattice that consisted of 20 particles witha = 1: the ac-drive periodT ≡ 2π/ω took
the values 50 or 25, while the dissipative constant wasα = 0.1. Note that the corresponding
friction-braking time∼1/α is significantly smaller than the periodT ; hence this regime was,
in fact, overdamped. The most significant effect observed in [15] was the depinning of a
kink trapped in the lattice under the action of a rather strong ac drive. In most cases, the
overdamped motion of the depinned kink was a diffusive drift; however, at some values of
the driving force, a nonzero mean velocity predicted by equation (2) withm = M = 1 was
observed. Thus, the results reported in [15] confirm, in a limited case, the qualitative prediction
made in [11]. However, the basic characteristic of the ac-driven motion, namely, its threshold,
was not considered in [15], and, in fact, the most interestingweaklydamped case was not dealt
with at all in that work.

Our objective is to present results of systematic numerical simulations that confirm the
existence of the stably moving dislocation-like collective excitations in the weakly damped
ac-driven FK lattice with periodic boundary conditions (b.c.), that include a phase jump of 2π ,
necessary to support the topological soliton. These collective excitations are found in two very
different forms: broad ones, that extend, roughly, to half the full length of the periodic lattice (so
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the term ‘soliton’ is not appropriate for them) and propagate keeping a virtually constant shape;
and narrow (really localized) quasi-solitons that are found in anexcitedform, demonstrating
persistent internal vibrations: the 2π -kink periodically splits into twoπ -subkinks that then
recombine back into it.

Because of the lack of a good initial guess, it proved to be virtually impossible to generate
these excitations directly. Therefore, it was necessary to devise a special indirect procedure that
made it possible to generate the moving collective excitations, which is described in section 2.
In sections 3 and 4, we summarize the numerical results obtained, respectively, for the broad
and narrow moving dislocations. The threshold characteristics for both types of dislocation
are presented in section 5, and the paper is concluded by section 6.

2. The mode of the simulations

All the attempts todirectlyfind the dynamical regime sought for in the weakly damped model
(3) have failed. A clue to a successful quest was to start from the case studied in the numerical
part of the work [4]. Indeed, the simulations of the modulated continuous model (1) performed
in that work amounted to a numerical solution of adiscretesystem with periodic modulation,

ξ̈n − a−2(ξn+1 + ξn−1− 2ξn) + [1 + ε sin(2πn/N)] sinξn = −αξ̇n + γ sin(ωt) (5)

(cf. equations (3)), subject to the periodic b.c. with the phase shift of 2π , ξN ≡ ξ0 + 2π . Note
that the modulation period introduced in equation (5) exactly coincides with the full size of
the lattice.

It was easy to catch the moving 2π -kink (dislocation) in simulations of the modulated
discrete system (5). The initial displacementsξn(t = 0) and the velocitieṡξn(t = 0) were
taken as per the exact kink solution of the unmodulated continuum SG equation, moving at
the velocity

uin = Nω/2π. (6)

This velocity is suggested by the condition of the fundamental resonance between the kink’s
motion and ac drive, which was our starting point. Actually, the possibility of launching
the moving dislocation in the modulated system was not sensitive to details of the initial
configuration, i.e., the driven dislocation is a sufficiently strong attractor in the weakly damped
modulated system. Then, the simulations were continued, gradually decreasing the modulation
amplitudeε until it vanished. In some cases, the ac-driven regime persisted up toε = 0. The
ac-driven regime of the motion of the dislocation in the unmodulated lattice was regarded as
stable if it persisted for>10 000 circulations around the periodic lattice (the corresponding
time is larger than that sufficient for a freely moving dislocation to be stopped by the friction
force, typically by a factor&500).

The study of the transition between the ac-driven regimes in the modulated FK lattice (3)
and the uniform one (5) is of interest in itself. Deferring a detailed consideration of this issue to
another work, we here demonstrate its most salient feature: keeping all the parameters but the
modulation amplitudeε constant, and gradually decreasingε, we observed an abrupt decrease
of the velocityu by a jump at a well-defined finite value ofε (figure 1). This feature proved
to be quite generic for the transition from the ac-driven motion in the modulated lattice to the
motion in the uniform one.

3. The broad dislocations

The first noteworthy numerical result for the uniform lattice (ε = 0) is that a minimum value
of the lattice sizeN , at which it was possible to extend the ac-driven regime up toε = 0, was
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Figure 1. A typical example of the abrupt decrease of the ac-driven soliton’s velocity in the
modulated FK lattice with the decrease of the modulation amplitudeε. In this figure,γ = 0.5,
a = 0.0564,α = 0.005, andN = 100. In this and all the other figures,ω = 1.

Nmin = 12, while no upper limit forN has been found (at least, up toN = 100). Another
noteworthy peculiarity is that the ac-driven motion of the dislocation could not be supported in
the uniform FK lattice, unless the driving frequencyω belonged to a narrow interval of width
1ω ∼ 0.03 around the valueω = 1. Therefore, all the plots displayed below pertain toω = 1.

A possible explanation of the latter feature can be provided by acascading mechanism
described below. First, we note thatω = 1 is exactly thegap frequencyin the spectrum of the
linear excitations,ξn ∼ exp(ikn− iχt), in the uniform FK model (3), which is

χ2(k) = 1 + 4a−2 sin2(k/2). (7)

The spatially uniform ac drive with the frequencyω, applied to the lattice, excites uniform
oscillations in it, which is the first step of the cascading. At the next step, the modulational
instability induced by the nonlinearity stimulates decay of the uniform oscillations into a
pair of travelling waves with the same frequencyω and the wavenumbers±k related toω
by the dispersion relation (7). Finally, at the third step, the travelling wave can support
(drag) a moving dislocation. Note that dragging a dislocation (kink) by a given periodic
travelling wave was earlier considered in terms of other physical models (see, e.g., [16]). If
ω is close to the gap frequency of the lattice, the generated travelling waves have a large
wavelength 2π/k ≈ 2π/a

√
ω − 1 (provided thatω > 1), and a relatively large amplitude

∼[(ω2 − 1)2 + α2]−1/2. This may be an explanation for the fact that the moving dislocations
supported by the ac drive have a large size (see below), and that they can be supported only
whenω is sufficiently close to 1.

In the established regime obtained atε = 0 by means of the procedure described above,
its commensurability indexr was found from the numerical data, using equation (4) as the
definition:

r ≡ 2πu/ω (8)

whereu is realized as the mean velocity of the ac-driven soliton. The value ofr thus found
was always quite high, but smaller than its large initial integer valuerin ≡ N in the modulated
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lattice (see equation (6)), which is explained by the abrupt drop ofu seen in figure 1. Moreover,
the value ofr found atε = 0 turns out to benoninteger. In figure 2, we display the plot ofr
versusa, obtained at fixed valuesN = 25,ω = 1, γ ' 0.5, andα = 0.005. It is necessary to
stress that, atN = 25, it was not possible to find the stable ac-driven regime atε = 0 outside
the limited range of the values ofa shown in figure 2.

Figure 2. The effective commensurability index defined as per equation (8) versus the inverse
harmonic coupling constanta, as obtained from the numerical data. Becauseω = 1, this plot,
in fact, also shows the velocity of the moving dislocation. The other parameters areγ ' 0.5,
α = 0.005, andN = 25.

At other values of the parametersN , γ , andα, the dependenciesr(a) were found to be
quite similar to those shown in figure 2. In particular, for each value of the lattice sizeN , there
is its own interval of the values ofa, in which the ac-driven motion can be observed. Definingā
as the central point of this interval, we were able to make the following observation: the product
āN changes only from 5.25 to 5.28 forN varying between 25 and 100. A straightforward
implication of this observation is that, in the quasicontinuum limit, the lengthL ≡ aN of
the closed system admitting the ac-driven motion of the dislocation is nearly constant (recall,
however, that the ac-driven motion of the dislocation (kink) is impossible in the uniform
continuous system).

Actually, the commensurability index isirrational, which is seen from a typical phase
portrait of the ac-driven regime displayed in figure 3(a). To generate the phase portrait, an
arbitrary lattice site was selected, and on its phase plane (ξn, ξ̇n), a discrete trajectory was
plotted, consisting of the points picked up att = (2π/ω)j , wherej is discrete time taking
integer values. The quasicontinuous evolution ofξn obvious in figure 3(a) implies that the
commensurability index is indeed irrational. Note, however, that the phase portraits show
no trace of dynamical chaos. Simultaneously, they strongly suggest that, on the phase plane
(ξn, ξ̇n), there must exist twofixed points, one being a saddle corresponding to the self-
intersection of the trajectory, the other one being a central point inside the loop formed by
the self-intersecting trajectory. The fixed points correspond tor = N , i.e., the solution in
which the soliton completes exactly one round trip in the periodic lattice during one period
of the external drive. However, we have not been able to capture the corresponding solutions



Dislocations in a weakly damped Frenkel–Kontorova lattice 7109

Figure 3. Typical examples of the phase portrait (a) and the shape (b) of the broad ac-driven
dislocation atγ = 0.5, a = 0.226,α = 0.005, andN = 25. The mean velocity of this dislocation
is u = 3.10.

in the simulations. It is obvious that the saddle is an unstable fixed point; hence it cannot be
found in the dynamical simulations. As regards the central fixed point, it would be stable in a
conservative system, but it may easily become unstable in our dissipative driven model, which
is a plausible explanation for the impossibility of capturing this fixed point.

Although the solution of the present type actually found is nonstationary, its nonstationarity
is mild: the dislocation does not manifest conspicuous internal vibrations, and, at any moment
of time, its shape is close to that in figure 3(b), which is an instantaneous snapshot showing
ξ̇n versus the lattice site numbern, taken at an arbitrarily chosen moment of time. Note that
the presentation of the shape in this form is relevant for the arrays of coupled small Josephson
junctions [7]: ξ̇n is the instantaneous voltage at thenth junction.

As one sees from figure 3(b), the moving excitation is broad, extending, roughly, to half
the full length of the lattice. Note, however, that this excitation is, definitely, a dislocation, as it
bears the topological charge 2π . In view of the fact that this moving dislocation is observed at
the values of the discreteness parametera ' 0.2 (see figure 2), and the size of the dislocation
is &10 (figure 3(b)), one may conjecture that the dislocation should have its counterpart in
the corresponding continuous model, i.e., the ac-driven damped SG equation. However, we
recall once again that the progressive motion of a collective excitation is impossible in the
ac-driven continuous systems. Alternatively, one can assume that the moving dislocation is
a 2π -kink massively ‘dressed’ by the long-wavelength lattice phonons, which would comply
with the above-mentioned cascading mechanism, that may feasibly account for the energy
transfer from the ac drive to the dislocation. Much more work is necessary to elaborate this
possibility.

4. The narrow dislocations and their vibrations

The broad dislocations considered in the previous section can hardly be called ‘solitons’.
However, a dislocation of another type, which is much better localized, can also be found. To
this end, we start from the modulated FK model (5), with the periodic b.c. corresponding to
the lattice size 2N (instead of the sizeN dealt with above), so that the initial dislocation, being
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essentially the same as in the previous section, is twice as narrow in comparison with the full
lattice size. Then, the procedure of decreasing the modulation amplitudeε to zero produces a
nondecaying excitation essentially different from that considered in the previous section. As
well as the broad dislocations, the new ones were observed only in a narrow interval of the
frequencies1ω ' 0.03 aroundω = 1.

A typical phase portrait of the dislocation of this type is shown in figure 4, which is
obviously different from figure 3(a). The moving dislocation demonstrates strong persistent
internal vibrations. Approximately periodically, it oscillates between two configurations, one
of which corresponds to a clearly localized 2π -kink, and the other to a set of two separated
π -subkinks (figure 5). We stress that the internal vibrations of the narrow dislocation (as well
as its progressive motion) continue indefinitely, being, obviously, permanently supported by
the ac drive. A numerically calculated temporal Fourier transform of the solutions (not shown
here) demonstrates that the frequency of the internal vibrations of the narrow dislocation
moving at the mean velocityu is close toa · u. It is necessary to mention that the kink in
the unperturbed FK lattice is known to have aninternal vibrational mode[2, 17], which may
be quite a natural explanation for the persistent internal oscillations of the narrow dislocation.
The internal mode can be easily excited by the periodic perturbation exerted by the lattice
on the dislocation moving past it. Of course, the progressive motion of the dislocation may
be significantly affected by the interaction of the corresponding degree of freedom with the
internal vibrations. In this work, we do not consider the latter issue in detail.

Figure 4. A typical example of the phase portrait of the narrow ac-driven dislocation atγ = 0.5,
a = 0.226,α = 0.005, and 2N = 50. The mean velocity of this dislocation isu = 2.80.

Thus, this type of moving collective excitation can be easily generated only in a vibrating
state. On the other hand, the fixed points corresponding to the centres of the three loops seen
in figure 4 (two upper and one lower) should represent this dislocation in its ground state.
Though it is virtually impossible to directly generate the dislocation in this state, its shape can
be effectively restored. To this end, we picked up a number of points belonging to one of the
three loops and distributed uniformly along it. A presumably stationary shape of the narrow
dislocation in its ground state was produced by juxtaposing and averaging the configurations
taken at the selected points belonging to the loop. The result is shown in figure 6. As one
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Figure 5. Three configurations between which the narrow dislocation vibrates: a 2π -kink (short-
dashed line), the two separatedπ -subkinks (solid line), and an intermediate profile (long-dashed
line). The values of the parameters are the same as in figure 4, except the actual size of the
lattice which, according to the procedure adopted for the generation of the narrow dislocations, is
2N = 50.

Figure 6. The indirectly retrieved configuration of the narrow dislocation in its ground state: (a)ξn
versus the discrete coordinaten; (b) ξ̇n versusn. The values of the parameters are the same as in
figure 5.

sees in this figure, the ground state is indeed a narrow soliton-like dislocation, whose width
is about a quarter of the full lattice size. The ‘tail’ attached to this narrow dislocation may,
in principle, be either an artifact generated by the approximation used, or a genuine feature
produced by the long-wavelength lattice phonons dressing the dislocation. We stress that the
juxtaposing and averaging procedure has produced, with a reasonable accuracy, thesameresult
when applied to all three loops in figure 4. Because the above-mentioned ‘tail’ was reproduced



7112 G Filatrella and B A Malomed

virtually in the same form in all three cases, we conjecture that it is a genuine feature of the
narrow dislocation, rather than an artifact. Accurate examination of the internal pulsations of
the narrow dislocation shows that the pulsations are quite irregular (probably, chaotic). They
have, in an approximate sense, a sort of basic period (not quite constant), which is close to six
periods of the ac drive. Thus, there is no obvious resonance between the internal oscillations
of the narrow dislocation and the external drive. Instead, this seems like a typical portrait
of chaotic oscillations in a weakly damped nonlinear dynamical system driven by a periodic
external force (as is well known, the dynamical regime in such a system should be, generally,
chaotic, even if the system has a single degree of freedom).

A natural question is whether more types of dislocation can be produced by a generalization
of the procedure that gave rise to the narrow dislocation, starting with the modulated lattice of
the full size 3N , 4N , etc. The answer to this question isnegative: at least, in the case of the
full sizes 3N and 4N , no new dislocation could be generated. So we just have the casesN

and 2N ; this is too little for us to infer an infinite limit. The fundamental question of whether
the dislocation that we have investigated is a soliton or not cannot be answered satisfactorily
with the simulation presented here. However, in the two cases investigated, the head of the
excitation is still interacting with the tail, so we should for the moment conclude that it is not
a soliton.

5. The threshold characteristics

As was mentioned above, a basic characteristic of the ac-driven regime is its threshold, i.e.,
a minimum valueγthr of the drive’s amplitudeγ that allows one to support the motion of the
dislocation at a nonzero mean velocity. Because the driving force must (first of all) compensate
the friction, we present, in figure 7,γthr versus the friction constantα at the driving frequency

Figure 7. The dependenciesγthr(α), the value ofa being selected so that the soliton’s velocity
v ≡ au, defined as per the quasicontinuum approximation, keeps a constant value,v = 0.7. The
stars, crosses, vertical scores, and rhombuses pertain, respectively, to the broad dislocations in the
lattices with the lengthsN = 12,N = 25,N = 50, andN = 100, respectively. The David’s
shields represent the narrow dislocations in the lattice with 2N = 50.
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ω = 1 and different values of the lattice sizeN , selecting the values of the inverse couplinga
so as to have a fixed value of the soliton’s velocityv = au, defined as per the quasicontinuum
approximation, in each plot. The data are presented for both types of dislocation, broad and
narrow. A remarkable feature is that the plotsγthr(α) for the dislocations of the former type are
nearly universal, depending very weakly upon the lattice sizeN (while the size of the broad
dislocation strongly depends onN , being'N/2 according to the above results). It is also
noteworthy that, for the narrow dislocations, the threshold is significantly lower, which may
be related to the fact that, on average, this dislocation involves in the collective motion fewer
particles in the lattice, and hence the dissipative losses are smaller.

A straightforward perturbation theory predicts the dependenceγthr(α) to be linear [4,8,11].
The dependencies displayed in figure 7 are, in fact, not far from being linear, but an extrapolation
(with a first-order-polynomial best fit) suggests thatγthr remains different from zero atα = 0.
A natural explanation for this is that the driving force must compensate not only the direct
dissipative losses, but also additional losses induced by the emission of radiation [13]. The
internal mode can be easily excited by the periodic perturbation exerted by the lattice on
the dislocation moving past it. Of course, the progressive motion of the dislocation may
be significantly affected by the interaction of the corresponding degree of freedom with the
internal vibrations. In this work, we do not consider the latter issue in detail.

Thus, at very smallα, the radiation losses may dominate, demanding a finite drive’s
amplitude in the limitα → 0. Indeed, at extremely low values of the damping (α below
≈0.001, the lowest damping shown in figure 7), the radiation processes seem to dominate in
the simulations. Actually, the ac-driven motion of the dislocation is very difficult to capture
in the case of extremely weak dissipation, i.e., the dissipation is a stabilizing factor for the
ac-driven dislocation (as long as the system does not become overdamped).

6. Conclusions

In this work we have demonstrated, by means of direct simulations, that two species of moving
collective nonlinear excitation of the dislocation type (distinguished by the topological charge
2π ) may exist in the ac-driven weakly damped FK lattice with periodic boundary conditions.
Direct generation of the moving solitons turned out to be impossible; however, they can
be generated initially in the lattice subject to a spatial modulation of the on-site potential
strength. Then, gradually decreasing the modulation depth, we were able to find stable moving
dislocations in the uniform FK lattice, provided that the lattice size isN > 12, and the driving
frequency is close to the gap frequency of the linearized model.

All the collective excitations that were found have a large noninteger index of com-
mensurability with the lattice. The results suggest that the exact value of the commensur-
ability index is likely to be irrational. Moving dislocations of two different types have been
found. The first type represents broad dislocations with a nearly stationary shape, extending
to approximately half of the whole length of the lattice. The other type is represented by
the collective excitations that, when generated directly, demonstrate strong persistent internal
vibrations between the configurations corresponding, respectively, to a relatively narrow 2π -
kink and two well-separatedπ -kinks. A shape of the dislocation of the latter type in the ground
(nonvibrating) state was recovered indirectly, by means of juxtaposing and averaging many
configurations picked up from a loop surrounding the corresponding fixed point. This ground
state proves to be a soliton-like 2π -kink whose width is about a quarter of the lattice size.

The threshold amplitude of the driving force was found as a function of the friction
constantα. An extrapolation of this dependence suggests that a nonzero drive amplitude
remains necessary atα → 0, which may be explained by radiation losses. However, the
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ac-driven dislocation becomes virtually unstable at vanishingly small values ofα.
The effects studied in this work theoretically can be easily observed in an array of linearly

coupled small Josephson junctions, in the form of a dc voltage generated by the ac bias current
uniformly applied to the array. Note that, once the shape of the moving dislocation in the
uniform lattice has been found, the corresponding initial configuration can easily be generated
in the experiment; hence there is no real need to invoke the auxiliary spatial modulation of the
lattice, which was a crucial trick in the simulations.

Although qualitative explanations of some features of the observed effects were put
forward in this work, full understanding of the ac-driven motion of dislocations in weakly
damped nonlinear lattices is still lacking.
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